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Continuous Systems  

Broadly speaking, models of vibratory systems can be divided into two classes, lumped 

and continuous, depending on the nature of the parameters. In the case of lumped 

systems, the components are discrete, with the mass assumed to be rigid and 

concentrated at specific points, and with the stiffness taking the form of massless springs 

connecting the concentrated masses. The masses and springs represent the system 

parameters, and such models are referred as discrete or lumped-parameter models. The 

motion of discrete systems is governed by a set of ordinary differential equations. 

  Continuous systems, on the other hand, differ from discrete systems in that the mass 

and elasticity are continuously distributed. Such systems are also known as distributed-

parameter systems, and examples include strings, rods, beams, plates and shells. While 

discrete systems possess a finite number of degrees of freedom, continuous systems 

have an infinite number of degrees of freedom because we need an infinite number of 

coordinates to specify the displacement of every point in an elastic body. The 

displacement is governed by a function of spatial and temporal variables. As a result, the 

motion of continuous systems is governed by partial differential equations to be satisfied 

over the entire domain of the system, subject to boundary conditions and initial 

conditions. 

The discrete and continuous systems are indeed closely connected, and in fact, both 

systems possess natural frequencies and normal modes of vibration. 
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Vibration of Strings 

 

It is assumed that both displacement and slope are small. It is also assumed that the 

tension remain constant along the string during vibration. 
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Where 
T

c


 is the velocity of wave propagation through in the string. Equation (3) is 

a 1-dim wave equation. Separation of variables method can be used to solve the this 

equation: 

 ( , ) ( ). ( )u x t U x G t   (4) 

 

Substituting in the differential equation follows that: 
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2 2 2

1 1 1d U d G

U dx c G dt
   (5) 

 

 

Which can be re-written as: 
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Equation (6) cannot be satisfied unless it equals a given constant other than zero: 
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Taking the left hand side: 
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Which can be arranged as: 
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The solution of equation (9) is given by: 
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Similarly, we can show that: 



4 

 

 (t) sin cosG C t D t     (11) 

Hence: 

 

  ( , ) sin cos sin cosu x t A x B x C t D t
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Example-1: For the fixed-fixed boundary conditions: 
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Applying boundary conditions; 

 (0, ) 0 (t) sin cos 0u t B G C t B t B         
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Hence: 
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The complete solution can be written as: 
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The constants Cn and Dn can be evaluated from the initial conditions: 
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Longitudinal vibration of Rods 

Longitudinal vibration in rods can also be characterized as 1-dim wave equation. 
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Considering an infinitesimal strip of length dx: 
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Differentiating with respect to x: 
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Applying Newton’s second low of motion on the strip: 
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  
2

2

P u
dx Adx

x t


 

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Substituting eq. (16) in (17): 
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
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Which can be re-arranged as: 
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Where 
E

c


 is the velocity of wave propagation through rod material. 

The solution is given by: 

  ( , ) sin cos sin cosu x t A x B x C t D t
c c
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Example-2: cantilever beam: 

 

 

Boundary conditions: 

u(0, t) = 0 which leads to: B = 0 

 

At the free end, the axial force must vanishes P = 0 
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 

 

Which is the frequency or characteristics equation of the system. Hence: 
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The constants ,n nC D  are to be determined from initial conditions. 
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Torsional Vibration of Rods and Shafts 

 

The angle of twist can be expressed as: 
Tdx

d
GJ

    (21) 

 

We can write: 
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Applying inertial law of motion: 
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Which can be re-arranged as: 
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Where 
G

c


 is the velocity of wave propagation through rod material. 
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Transverse Vibration of Beams  

 

From strength of materials, the bending moment 
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w
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
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And also, the shear force: 

 
M

V
x





  (27) 

 

Where w is the transverse displacement, I is the second moment of cross sectional area 

and E is the Young’s modulus. 

Consider the infinitesimal element:  

 

Applying inertial law of motion in the vertical direction: 
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Hence: 
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   
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So, we can write: 

3

3

w
V EI

x


 


       (30) 

differentiating eq. (30) with respect to x: 

4

4

V w
EI

x x

 
 

 
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From eq. (28): 

 

2 4

2 4

w w
A EI

t x


 
 

 
  (32) 

 

Which can be re-arranged as: 

 

4 2

4 2

EI w w

A x t

 
 

 
  (33) 

 

Separation of variables method can be used to solve this equation: 

 ( , ) ( ). ( )w x t W x G t   (34) 

 

Substituting in the differential equation follows that: 

 

4 2

4 2

1 1EI d W d G

A W dx G dt
    (35) 

 

 

Which can be cannot be satisfied unless it equals a given constant other than zero: 
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4 2
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4 2

1 1EI d W d G

A W dx G dt



      (36) 

 

Taking the left hand side: 
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1EI d W
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


     (37) 

Which can be arranged as: 

 

 

4
2

4
0

d W A
W

dx EI


    (38) 

Denoting 
4 2A

EI


   

 

4
4

4
0

d W
W

dx
    (39) 

 

 

The solution of equation (38) is given by: 

 

 ( ) sin cos sinh coshW x A x B x C x D x         (40) 

 

Similarly, taking right side of eq. (35), we can show that: 

 

 (t) sin cosG E t F t     (41) 

Hence: 

 

    ( , ) sin cos sinh cosh sin cosw x t A x B x C x D x E t F t            (42) 

 

 

Example-1: Cantilever beam 

Boundary conditions: 

At x = 0, the displacement and slope are zeros : 0, 0
dW

W and
dx

   

At x = L, the bending moment and shear force are zeros, then 

2 3

2 3
0, 0

d W d W

dx dx
 

 



13 

 

By substituting the boundary conditions into eq. (39) and after some manipulations, we 

obtain: 

 
sin sinh

( ) sin sinh cos cosh
cos cosh

n n
n n n n n n

n n

L L
W x A x x x x

L L

 
   

 

 
    

 
 

And n  can be obtained by solving: 

cos cosh 1n nL L     

The above equation can be solved numerically to give Eigen values nL , with the first 

three Eigen values are: 

1 2 3

1.8751 4.6941 7.8548
, ,

L L L
      

 

The natural frequencies 
2

n n

EI

A
 


 with first three values: 

 

 

 

2

1 4

2

2 4

2

3 4

1.8751

4.6941

7.8548

EI

AL

EI

AL

EI

AL
















 

 

The following table lists the common beam configurations and the associated mode 

shapes and Eigen values: 
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Notes about boundary conditions: 

(1)  Clamped: both displacement and slope are zeros: 0, and 0
dW

W
dx

   
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(2) Hinged (or simply supported) both displacement and bending moment are zeros: 

2

2
0, and 0

d W
W

dx
   

(3) Free: bending moment and shear force are zeros: 

2 3

2 3
0, and 0

d W d W

dx dx
   

 


